

Modifications:

- Reconciling differences between two papers.
 - Vesic, A., 1973, "Analysis of Ultimate Loads of Shallow Foundations", Journal of Soil Mechanics and Foundation Division.
 - Hansen, J. B. 1961, "A General Formula for Bearing Capacity", Bulletin 11, The Danish Geotechnical Institute.
- Adding depth factor.

End bearing equation. Typo Correction

FAD 5.2.2 and older Correction $N_q = e^{\pi * \tan(\phi_{rad})} * \tan^2\left(\frac{\pi}{4} + \frac{\phi_{rad}}{2}\right)$ $N_c = (N_q - 1) * \cot(\phi_{rad})$ Table 5 in Vesic (1973) **Circle and Square** Eq. 13 of Hansen (1961) Eq. 11 of Vesic (1973) $\zeta_{as} = 1 + \tan(\phi)$ $i_c = i_q - \frac{1 - i_q}{N_c \tan \varphi}$ $\xi_c = \xi_q - \frac{1 - \xi_q}{N_q \tan \phi}$ Typo: It is not Nq but Nc Table 5 in Vesic (1973) **Circle and Square Correction now** $\zeta_{cs} = 1 + \tan(\phi) + \frac{1}{N_q}$ matches Table 5 in Vesic $\zeta_{cs} = 1 + \left(\frac{N_q}{N_c}\right)$ (1973), while older FAD versions didn't match.

Introducing Depth Factor

D/B<=1 Equations 10 and 12 Vesic (1973) D/B>1 Equations 13 and 14 Vesic (1973)


$$\zeta_{qd} = 1 + 2 * \tan(\phi) * (1 - \sin(\phi))^2 * \frac{D}{B}$$

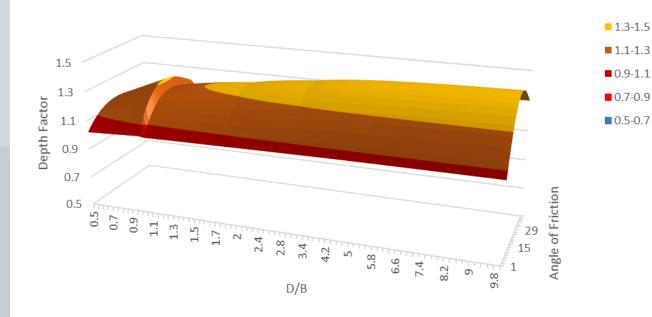
$$\zeta_{\gamma d} = 1$$

$$\zeta_{cd} = (1 + 0.4 * \frac{D}{B})$$

$$\begin{cases} \zeta_{qd} = 1 + 2 * \tan(\phi) * (1 - \sin(\phi))^2 * \\ tan^{-1} \left(\frac{D}{B}\right) \\ \zeta_{\gamma d} = 1 \\ \zeta_{cd} = \left(1 + 0.4 * tan^{-1} \left(\frac{D}{B}\right)\right) \end{cases}$$

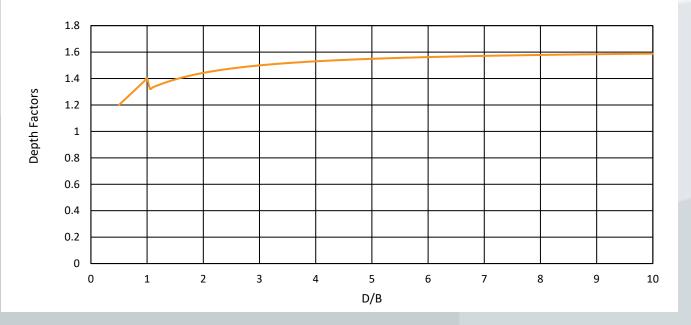
Equation in FAD Code: $\zeta_{cs} = 1 + tan(\phi) + \frac{1}{N_q}$

Shape factor for cohesion: $\zeta_{cs} = 1 + \frac{N_q}{N_c}$


---- Shape factor for cohesion times depth factor: $\zeta_{cs} * \zeta_{cd} = (1 + \frac{N_q}{N_c})(1 + 0.4 * tan^{-1} \left(\frac{D}{B}\right))$

Greater depth of embedment could be obtained after this correction particularly for D/B < 3

$$\zeta_{qd} = 1 + 2 \tan(\phi) (1 - \sin(\phi))^2 \frac{D}{B} \text{ when } \frac{D}{B} \le 1$$


$$q_d = 1 + 2 \tan(\phi) (1 - \sin(\phi))^2 \tan^{-1} \left(\frac{D}{B}\right) \text{ when } \frac{D}{B} > 1$$

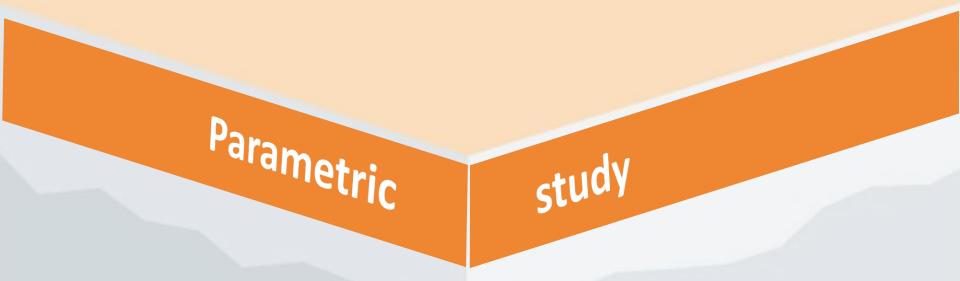
Lesser depth of embedment could be obtained after this correction

$$\zeta_{qd} = 1 + 2 \tan(\phi) (1 - \sin(\phi))^2 \frac{D}{B} \text{ when } \frac{D}{B} \le 1$$

$$qd = 1 + 2 \tan(\phi) (1 - \sin(\phi))^2 \tan^{-1} \left(\frac{D}{B}\right) \text{ when } \frac{D}{B} > 1$$

Lesser depth of embedment could be after doing only this correction

Verification



Verification

FAD Result (e.g., <u>Input File</u>)										
Capacity Verification at Groundline										
p of Shaft		Applied Load on Top of Shaft	Applied Load at Groundline	Nominal Capacity at Groundline	Design Capacity at Groundline					
Axial [kips]	~	1	1	34.85	20.64					
Shear [kips]	~	1	1	8.23	5.18					
Moment [kip-ft]	~	1	2	16.46	10.37					
Axial [kips]	~	1	1	220.16	100.4					

Hand Calculation in excel

E	F	G	Н	I.	J	K	L
						Hand Calculatior	<mark>1</mark>
		Weight of	the Caissor	า		3.3	<mark>0</mark>
Total Force							
		Nominal				220/162	<mark>5</mark> kips
		Design				100.399	5 kips

Parametric study available upon request.

Impact on Depth of Embedment

For cohesive soils and when compression loads control the design

D/B lesser than 2.

soft and medium stiff clay: Depth of embedment increases after the Vesic correction by approximately 50%. For this relatively low D/B ratio, typically drilled shafts are designed using alternative methods rather than FAD Tools.

Very stiff clay: Depth of embedment can increase by up to 100% for D/B equal to 1 and large diameters (e.g. 5 to 10 ft).

Impact on Depth of Embedment

For cohesive soils and when compression loads control the design

D/B equal or greater than 2, Soft and medium stiff clays : Depth of embedment increase is less than 10% for D/B greater than 4 regardless of the diameter;

Very stiff clays : Depth of embedment increase is approximately 10% .

Impact on Depth of Embedment

For sandy soils and when compression loads control the design.

D/B lesser than 2. Depth of embedment decreases after Vesic correction by about 11 percent For this relatively low D/B ratio, typically drilled shafts are designed using alternative methods rather than FAD Tools.

D/B equal or greater than 2. Depth of embedment decreases by about 20 percent after correction.

